Programming Techniques
Second year

Organization of Programming Languages

Understand how languages are designed and implemented

* Syntax -- What a program looks like
* Semantics -- What a program means
* Implementation -- How a program executes

Understand most appropriate language for solving
specific problems, For example:

* Pascal, C -- procedural, statement oriented
* C++, Java, Smalltalk -- Object oriented
« ML, Lisp -- Functional

* Proleog -- Rule-based

PZ01A Programming Language design and Implementation -4th Edition

F o

Language Goals

During 1950s--1960s - Complle programs to execute
efficiently.

There 1s a direct connection between language
features and hardware - integers, reals, goto
statements

Programmers cheap; Machines expensive; Keep the
machine busy

But today

Complle programs that are built efficiently
CPU power and memory very cheap

Direct connection between language features and
design concepts - encapsulation, records,
inheritance, functionality, assertions

PZ01A Programming Language design and Implementation -4th Edition

F o

Why study programming languages?

To 1mprove your ability to develop effective
algorithms

To 1mprove your use of your exlstling programming

language

To 1ncrease your vocabulary of useful programming
constructs

To allow a better choice of programming language

To make 1t easler to learn a new language

To make 1t easler to design a new language

PZ01A Programming Language design and Implementation -4th Edition

F o

Evolution of software architecture

1950s - Large expenslive malnframe computers ran
single programs (Batch processing)

1960s - Interactive programming (time-sharing) on
malnframes

1970s - Development of Minicomputers and first
microcomputers. Apple II. Early work on windows,
icons, and PCs at XEROX PARC

1980s - Personal computer - Microprocessor, IBM PC
and Apple Macintosh. Use of windows, 1cons and mouse

1990s - Client-server computing - Networking, The
Internet, the World Wide Web

PZ01A Programming Language design and Implementation -4th Edition

F o

Attributes of a good language

Clarity, simplicity, and unity - provides both a
framework for thinking about algorithms and a means
of expressing those algorithms

Orthogonality -every combination of features is
meaningful

Naturalness for the application - program structure
reflects the logical structure of algorithm

Support for abstraction - program data reflects
problem being solved

PZ01A Programming Language design and Implementation -4th Edition

F o

Attributes of a good language (continued)

FEase of program verification - verifying that program
correctly performs 1ts required function

Programming environment - external support for the
language

Portability of programs - transportability} of the
resulting programs from the computer on which they
are developed to other computer systems

Cost of use - program execution, program translation,
program creation, and program malntenance

PZ01A Programming Language design and Implementation -4th Edition 7

F o

Language paradigms

Imperative languages

Goal 1s to understand a machine state (set of memory
locations, each contalning a value)

Statement oriented languages that change machine
state (C, Pascal, FORTRAN, COBOL)

Synitax:s 8l, 852, 843,

Applicative (functional) languages

Goal is to understand the function that produces the
answer

Function composition 1s major operation (ML, LISP)
Syntax: Pl1(P2(B3(X))})

Programming consists of building the function that
computes the answer

PZ01A Programming Language design and Implementation -4th Edition

F o

Language paradigms (continued)

Rule-based languages

Specify rule that specifies problem solution (Prolog,
BNF Parsing)

Other examples: Declsion procedures, Grammar rules
(BNF)

Syntax: Answer — specification rule

Programming consists of specifying the attributes of
the answer

Object-oriented languages

Imperative languages that merge applicative design
with 1mperative statements (Java, C++, Smalltalk)

Syntax: Set of objects (classes) containing data
(1mperative concepts) and methods (applicative
concepts)

PZ01A Programming Language design and Implementation -4th Edition

F o

Machine architecture

PZ01A Programming Language design and Implementation -4th Edition

F o

10

Typical machine design

| I'C | Y | :': ~%— Many high speed registers

[1B | ALU -4— Arithmetic / Logic unit

IC - Instruction counter

MAR MDR MAD - Memory address register
MDR- Memory data register

IR - Instruction register

MAIN MEMORY

Two cycles:
*Fetch cycle - get instruction

«Execute cycle - do operation

PZ01C Programming Language design and Implementation -4th Edition 11

. i 4 U

Typical machine translation

Rz il Instruction format:
Opcode register, index, offset
24 load Rl, R2, 24
25
X
Y 4
h'd
Y
7

For example 1n C: As we see later, memory for data 1n
blocks of storage pointed to by a register:

X =Y+ 4
could be translated as:
load R1, R2, 28 [Location of Y]
add R1l, B2, 40 [Location of Z]

store Rl, R2, 24 [Location of X]

PZ01C Programming Language design and Implementation -4th Edition 12

B i 4 U

Software architectures

Previously

* Build program to use hardware efficiently.

* Often use of machine language for efficiency.

Today

* No longer write directly in machine language.
¢« Use of layers of solItware.

* Concept of virtual machines. Each layer 1s a machilne
that provides functions for the next layer.

PZ01C Programming Language design and Implementation -4th Edition

B i 4 U

13

Virtual Machines

Example: Web application

Input data Output results

WEB APPLICATION COMPUTER
(Implemented as HTML Web pages)

WEB VIRTUAL COMPUTER
(Browser program implemented in C or Java)

C VIRTUAL COMPUTER
(Implemented by run-time library
routines loaded with the compiled program)

OPERATING SYSTEM VIRTUAL COMPUTER
(Implemented by machine-language programs
executing on the firmware virtual computer)

FIRMWARE VIRTUAL COMPUTER
(Implemented machine-language instructions
by microcode executed by the actual computer)

ACTUAL HARDWARE COMPUTER
(Implemented by physical devices)

PZ01C Programming Language design and Implementation -4th Edition

B i 4 U

14

Language translation

PZ01A Programming Language design and Implementation -4th Edition

F o

15

Program structure

syntax
* What a program looks like

* BNF (context free grammars) - a useful notatien Efor
describing syntax.

Semantics

e« Execution behavior

« Static semantics - Semantics determined at compile time:
— var A: integer; Type and storage for A
- int B[10]; Type and storage for array B
— float MyProcC (float x;flcocat y){...}; Function
attributes
* Dynamic semantics - Semantics determined during execution:
- X = "ABC'"' X a string

- X =1+ 2; X an 1nteger

FZ02A Programming Language design and Implementation -4th Edition 16

B i U

Aspects of a program

Declarations - Information for compiler
- var A: 1integer;
- typedef struct { int A; float B } C;

Control - Changes to state of the machine
- 1F (B<B)} [.= 1}
- while (C>D) { ... }

Structure often defined by a Backus Naur Form (BNF)
grammar (First used 1n description of Algol 1in 1958.
Peter Naur was chair of Algol committee, and John
Backus was secretary of committee, who wrote report.)

We will see later - BNF turns out to be same as context
free grammars developed by Noam Chomsky, a linguist)

FZ02A Programming Language design and Implementation -4th Edition

B i U

Stages in translating a program

Source program
Lexical
analysis ~_
Le:-cicfl tokens T SOURCE
Syntactic Promens PROGRAM
analysis
+ - RECOGMNITION
Symbol Parse tree WL
table > s PHASES
Other d Semantic
tables analysis
Intermediate code
Optimization
: . Object code from
DBIECT "] other compilations
Fica Optimized intermediate 1
o cpde
CODE :
; Object e Executable
...... - Code generation | ="~ Linking | S
GENERATION S50 =
i COMPILATION LOADING

FZ02A Programming Language design and Implementation -4th Edition 18

B i U

Major stages

Lexlical analyslis (Scanner): Breaking a program 1into
primitive components, called tokens (identifiers,
numbers, keywords, ...)

Syntactic analysis (Parsing): Creating a syntax tree of the
program.

Symbol table: Storing information about declared objects
(identifiers, procedure names, ...)

Semantic analysis: Understanding the relationship among the
tokens 1in the program.

Optimization: Rewriting the syntax tree to create a more
efficient program.

Code generation: Converting the parsed program i1nto an
executable form.

FZ02A Programming Language design and Implementation -4th Edition 19

B i U

Translation environments

Source : Executable program
———| Translator (software) Run-time| .
Program _ support | :
library) Virtual computer (completely
l ' or partially software
Translation error messages l : simulated)
¥ : Output
i Interpreter (firmware, Ty
Linker —* | hardware, or software)
sSource s -
—| Translator (software) 41‘ 1 ; Error
Program Object programs +
. R : Operations (firmware, HEsEIge
Execution data hardware, or software)
Translation error messages e
FTRANSLATION LOADING EXECUTION
PZOZA 20

B i

FProgramming Language design and Implementation -4th Edition

U

PZOTA

Expressions

Programming Language design and Implementation -4th Edition

B i 4 U

Arithmetic Operators
Rules of Operator Precedence

Operator(s)

(

)

ol

Precedence & Associativity

Evaluated first. If nested
(embedded), innermost first. If
on same level, left to right.

Evaluated second. If there are
several, evaluated left to right.

Evaluated third. If there are
several, evaluated left to right.

Evaluated last, right to left.

Using Parentheses

Use parentheses to change the order i1n which an
expression 1s evaluated.

a + b ¥ ¢ Would miltiply b * ¢ Tirst,
then add a to the result.

If you really want the sum of a and b to be
multiplied by c, use parentheses to force the
evaluation to be done 1n the order vyou want.

(6. + b)) =+ 2

Also use parentheses to clarify a complex
expression.

Extended Example

* Given 1integer variables a, b, ¢, d, and
e, where a =1, b =2, ¢ = 3, d = 4,
evaluate the following expression:

e=b %$d/c*b - a

e= (b %d)/ c*b - a

e=((b %$d) /c) *b-a

e ({ ((Bs@g) 4 &) % b)) —a
e=((((b&d) / c) *b) - a)
e = (((2 %4) /3)*2)-1)

Extended Example (cont’d)

., m., ., ., . e,
GAAAAAA
| O
DMAA
|._..L"'-..-'
W Bl B T
"h--rl
Y & Lo~ aP
"---"['\J"---""-...,_“I_b
|--.--')[.wh-.-r
BN~
— B~ % W
=~
= T N

@ ® ®o® ® ® @ d D
(| | A O | B |

Note: Always use parenthesis when you
have more than two operators!

Another Extended Example

Given i1nteger variables a, b, ¢, d, and
e, where a =1, b =2, ¢ = 3, d = 4,
evaluate the followling expression:

ST I e o AL 1
o

mgmmmmm
|

—

Another Extended Example (cont’d)

—~ o o T~
o M . R . AL e

o i s B e o B e W e SR

S | N | SO N | MO | N | B | (O |
I o O O O 0 OO O

| | | O | A |
BN 9 BT e R0

d */

/*e 1s now set to 4 and so is

Practice With Evaluating Expressions

Given integer variables a, b, ¢, d, and
e, where a =1, b =2, ¢ =3, d = 4,

evaluate the following expressions:

a +t.h = g ¢ d

a*b / c

1 + a b % ¢

a + d % B —~ e
e=b=d+c/ b - a

Postfix

Infix notation: Operator appears between operands:
2 + 3 > 5
3 +46 > 9
Tmplied precedence: 2 + 3 * 4 5> 2 + (3 * 4),
not (2 + 3) * 4
Prefix notation: Operator precedes operands:
+ £ 5~ 3D
+ 2 * 350 > (+2 (*35)) —=>+ 215 > 17
Postfix notation: Operator follows operands:
2 3+ 5 5
2 3 *5 + 5((23*5+4) 65 + - 11

Called Polish postfix since few could pronounce Polish
mathematician Lukasiewicz, who invented it.

An interesting, but unimportant mathematical curiosity
when presented in 1920s. Only became i1mportant 1in
1950s when Burroughs rediscovered 1t for their ALGOL

compiler.

FZ07A Programming Language design and Implementation -4th Edition

B i U

29

Evaluation of postfix

1. If argument 1s an operand, stack 1it.

If argument 1s an n-ary operator, then the n
arguments are already onthe stack. Pop the n
arguments from the stack and replace by the value of
the operator applied to the arguments.

Example: 2 3 4 + 5 * +
£ = SLark
3 = Btack
- stack
replace 3 and 4 on stack by 7/

- stack

— replace 5 and 7 on stack by 35

~ o s W N
* 0 o+ b
I

+
I

replace 35 and 2 on stack by 37

PZ07A Programming Language design and Implementation -4th Edition

B i 4 U

Importance of Postfix to Compilers

Code generation same

To generate code for

1

2
s
-

2 =
3 =
4 =

_I__

stack L-wvalue
stack L-wvalue
stack L-wvalue

generate code

as expression evaluation.
23 4=+ 5 ¥+, dos

af 2

of 3

of 4

to take R-value of top stack element

(L-value of 4) and add to R-value of next stack element
(L-value of 3) and place L-value of result on stack

5 - stack L-value of 5

= —~ generate code to take R-value of top stack element
(L-value of 5) and multiply to R-value of next stack
element (L-value of 7) and place L-value of result on
stack

+ — generate code to take R-value of top stack element
(L-value of 35) and add to R-value of next stack element
(L-value of 2) and place L-value of result (37) on stack

PZ07A Programming Language design and Implementation -4th Edition 31

B i 4 U

Parameter transmission

PZ09B Programming Language design and Implementation -4th Edition

B i 4 U

Parameter passing

Parameter: A varlable 1n a procedure that represents
some other data from the procedure that invoked the
given procedure.

Parameter transmission: How that information 1s passed
to the procedure.

* The parameter is also called the formal argument.The
data from the invoking procedure is called the actual
argument or sometimes just the argument.

Usual syntax:

Actual arguments: call P(A, Bt2, 2743)

Parameters: Procedure P(X, Y, Z2)

What 1s connection between the parameters and the
arguments?

* Call by name

* Call by reference

* Call by wvalue

* Call by result (or value-result)

FZ09B Programming Language design and Implementation -4th Edition 33

B i U

Language dependent

Difference languages have different mechanisms:
e ALGOL - name, value

 Pascal - wvalue, reference

* C - value (BUT polnters give us reference

Constant tension between desire for efficiency and
semantic correctness 1n defining parameter
transmission.

PZ098 Programming Language design and Implementation -4th Edition

B i 4 U

Call by name

Substitute argument for parameter at each occurrence of
parameter:

Invocation: P(A, B+2, 27+3)
Definition: procedure P(X,Y, Z)

FIRE. T8¢ TI5T: &8 T £ FTL) %229
Meaning: P(X,Y,2) {int I; I=7; A=I+(7/(B+2))*(27+3);}

This 1s a true macro expansion. Simple semantics, BUT:
1. Implementation. How to do 1t?
2. Aliases. What if statement of P were: I = A?

3. Expressions versus statements: If we had D=P(1,2, 3)
and a return(42) in P, what does semantics mean?

4. Error conditions: P(A+B, B+2, 27+3)

FZ09B Programming Language design and Implementation -4th Edition 35

B i U

Implementation of call by name

A thunk 1s the code which computes the L-value and R-
value of an argument.

For each argument, pass code address that computes both
L-values and R-values of arguments.

P(A, B+2, 27+3) generates:
jump to subroutine P
address of thunk to return L-value (A)
address of thunk to return R-wvalue (A)
address of thunk to return L-value (B+2)
address of thunk to return R-value (B+2)
address of thunk to return L-value (27+3)

address of thunk to return R-value (27+3)
To assign to X, call thunk 1, To access X, call thunk 2
To assign to Y, call thunk 3, To access Y, call thunk 4
To assign to Z, call thunk 5, To access Z, call thunk 6

Issue: Assignment to (B+2): How?

Call by name 1s conceptually convenient, but i1nefficient.
FZ09B Programming Language design and Implementation -4th Edition 36

B i U

1

Examples of Call by Name

P(x) {x = x + X:}
Seems simple enough ..
Y = 2; P(Y); write(Y) = means Y = Y+Y
write(Y) = prints 4
int A[10];
for(I=0; I<10; I++) {A[Il=I:};
I=1; P(A[I]) = A[l] = A[l] + A[l] = A[l] set to 2

< BRE: F {I = T 4 1} ‘Eetarh: Ij]

What 1is: P(A[F])?
P(A[F]) = A[F] = A[F]+A[F] = A[I++] = A[I++]+A[I++]
— A[2] = A[3]+A[4]

4. Write a program to exchange values of X and Y:

(swap(X,Y))

Usual way: swap(x,y) {t=x; x=y; vy=t;}
Cannot do i1t with call by name. Cannot handle both of

following: swap(I, A[I]) swap(A[I],I)

One of these must fail.

FZ09B Programming Language design and Implementation -4th Edition

B i U

Call by reference

Pass the L-value of the argument for the parameter.
Invocation: P(A, B+2, 27+3)

Implementation:

Templ =
Temp2 =
jump to
L-value
L-value
L-value

This 1s the most common parameter transmission
mechanism. In the procedure activation record,

B2

27+3
subroutine P
of A

of Templ

of TempZ2

intX
int Y
argl V=7
call Q(X)

Act. rec. for Q

Act. Rec. for P
7 #
A

i

parameter X 1s a local variable whose R-value 1s the

L-value of the argument.

PZ09E

B i

Programming Language design and Implementation -4th Edition

4 U

38

Call by value

Pass the R-value of the argument for the parameter.
Invocation: P(A, B+2, 27+3)

Implementation: i
P intX Act. Rec. for P Act. rec. for @

Templ = B2 int Y
Temp2 = 27+3 spry| =7 -
jump to subroutine P
R-value of A o 3

X=3 X
R-value of Templ | call Q(x)

R-value of TempZ

In procedure activation record, parameter X is a local
variable whose R-value i1s the R-value of the
argument.

PZ09B Programming Language design and Implementation -4th Edition 39

B i 4 U

Call by referenceinC

C only has call by wvalue,

BUT polnter variables allow for simulating call by
references:

P(1, J]) = passes 1 and] by value.
P(&1, &J]) = passes L-values of 1 and j.

P(%x, *y) {*x = *y + 17} => arguments are addresses
(polnters)

Call by result (or value-result): Call by value, AND
pass back the final value to argument upon return.

Parameter 1s a local value in procedure.

Similar to call by reference, except for aliasing.

FZ09B Programming Language design and Implementation -4th Edition 40

B i U

In-out semantics

Parameters 1n Ada are based upon use (semantics), not
implementation:

1n - argument value will be used 1n procedure.
out - parameter value will be used 1n calling program.

1n out - both uses of arguments and parameters
P(X in integer;
Y out integer;
Z in out integer);
begin ... end;

In Ada 83, language definition allowed some latitude in

implementation = as long as implementation
consistent, ok.

But this meant that the same program could give
different answers from different standards conforming

compilers
In Ada 95, more restricted: in integer is wvalue, out

integer is value-result, composite (e.g., arrays) 1is
reference.

PZ098 Programming Language design and Implementation -4th Edition 41

B i 4 U

Example of parameter passing

Main
{A = B =5; C=28; D=29;

P(A, B, C, D); write(A, B, C, D);
P(U, V, W, X)

I
2
-

{V = U+A;
W = A+B;
A = A+1;
X = A+2;

write(U, V, W, X)}
Fill in table assume parameters are of the given type:
A B C D U V W X print P print main

Call by name

Call by reference

Call by value

Call by result

When do call by name and call by reference differ?
When L-value can change between parameter

references. E.g., P(I, A[I])

FZ09B Programming Language design and Implementation -4th Edition

B i U

PZ11B

Parallel execution

Programming Language design and Implementation -4th Edition

B i 4 U

Parallel programming principles

Varliable definitions. Variables may be elther mutable or
definitional. Mutable variables are the common
variables declared in most sequential languages.
Values may be assigned to the variables and changed
during program execution. A definitional wvariable may
be assigned a value only once.

Parallel composition. We need to add the parallel
statement, which causes additional threads of control
to begin executing.

Program structure. They may be transformational to
transform the input data into an appropriate output
value. Or it may be reactive, where the program reacts
to external stimuli called events.

Communication. Parallel programs must communicate with
one another. Such communication will typically be via
shared memory with common data objects accessed by
each parallel program or via messages.

Synchronization. Parallel programs must be able to order
the execution of 1ts various threads of control.

FZ11B Programming Language design and Implementation -4th Edition 44

B i U

Impact of slow memories

Historically - CPU fast

Disk, printer, tape - slow
What to do while waiting for I/O device? - Run another
program:
hMemory
Program 1 T———a Switch to another
Program 2 program every 20--30 msec
Program 3 “RHH\“Hm‘
Operating 8
System

Even today, although machines and memory are much
faster, there is still a 10° or more to 1 time

difference between the speed of the CPU and the speed
for accessing information from disk. For example,

e TInstruction time: 50 nanosecond

« Disk access: 10 milliseconds = 10,000,000 nanoseconds

PZ11B Programming Language design and Implementation -4th Edition 45

B i 4 U

Multiprogramming

Now:

Multiple processors

Networks of machines

Multiple tasks simultaneously

Read input

Do calculations

Write output

-
-

Do all
simultaneously
for efficiency

Problems:

1. How to switch among parts effectively?

2. How to pass information between 2 segments?

Content switching of environments permitting concurrent

execution of separate programs.

PZ11B

Programming Language design and Implementation -4th Edition

B i

4 U

46

Parallel constructs

Two approaches (of many):

1. AND statement (programming language level)

2. fork function (UNIX) (operating system level)

and: Syntax: statementl and statementZ and statementd
Semantics: All statements execute in parallel.

Execution goes to statement following and after all
parallel parts terminate.

51; S1 and 82 and §53; 84 = 84 afrer 81, 82, and
S3 terminate
— Implementation: Cactus stack

(Cactus stacks

o w

S Se $3

Saguarro

v V v cactus

PZ11B Programming Language design and Implementation -4th Edition 47

. i U

Parallel storage management

Use multiple stacks. Can use one heap (c)
stack stack stack 1
e Sty e
stack 3.....|....].. |
gottee =
stack actrec [*15
l actrec [
actree = !
stack :
l actrec [w=|->?
actrec |-
i g actrec [
(a) Single stack (b) Multiple stacks (C) Single heap

PZ11B

B i

FProgramming Language design and Implementation -4th Edition

U

“and’” statement execution

ATter Ll, add 51; 52, 53 all onto stack.
Each stack 1s 1ndependent.
How to implement? — Heap storage 1s one way for each
activation record.

2. fork() function:
t Sl Torkt):
1f I am parent process
do { malin task;

sleep until child process terminates
1f I am child process do { exXec new process

S2 = 82 executes when both parent and child
process terminate above action

Both parent process and child process execute
independently

FZ11B Programming Language design and Implementation -4th Edition 49

B i U

Tasks

A task differs little from the definition of an
ordinary subprogram

« 1ndependent execution (thread of control)

* requires task synchronization and communication with
other tasks - will look at communication later
(semaphores)

* has separate address space for 1ts own activation
record

PZ11B Programming Language design and Implementation -4th Edition

B i 4 U

PZ13A

Processor design

Programming Language design and Implementation -4th Edition

B i 4 U

Traditional processor design

External files and input-output equipment

Main memory

Cache memory

b i i o o e o - o - i

Program Address
Register

-
Interpreter """ | operation 1

CENTRAL PROCESSING UNIT

- S R W SN N B R NS AN N S N

- = =

High-speed
registers

Active
processing
elements

PZ13A Programming Language design and Implementation -4th Edition

B i 4 U

b3

Ways to speed up execution

To 1ncrease processor speed
Increase functionality of processor - add more complex
instructions (CISC - Complex Instruction Set
Computers)
Need more cycles to execute 1nstruction:
2 cycles:
- fetch instruction
- execute instruction
How many:
- fetch 1nstruction
- decode operands
- fetch operand registers
- decode instruction
- perform operation
- decode resulting address
- move data to store register
- store result
—> 8 cycles per instruction, not 2

FZ13A Programming Language design and Implementation -4th Edition

B i U

53

Alternative - RISC

Have simple 1nstructions, each executes 1n one cycle
« RISC - Reduced instruction set computer
Speed - one cycle for each operation, but more

operations. For example: A=B+C
CISC: 3 instructions

Load Register 1, B

Add Register 1, C

Store Register 1, A
RISC:10 instruction

Address of B 1n read register

Read B

Move data Register 1

Address of C in read register

Read C

Move data Register 2

Add Register 1, Register 2, Register 3

Move Register 3 to write register

Address of A in write register

Write A to memory

FZ13A Programming Language design and Implementation -4th Edition

B i U

54

Aspects of RISC design

Single cycle 1nstructions

Large control memory - often more than 100 registers.

Fast procedure invocation - activation record
invocation part of hardware. Put activation records
totally within registers.

PZ13A Programming Language design and Implementation -4th Edition

B i 4 U

53

Implications

Cannot compare processor speeds of a RISC and CISC
processor:

CISC - perhaps 8-10 cycles per instruction

RISC - 1 cycle per 1instruction

CISC can do some of these operations in parallel.

PZ13A Programming Language design and Implementation -4th Edition

B i 4 U

56

Pipeline architecture

CISC design:

1. Retrieve 1nstruction from maln memory.

2. Decode operation field, source data, and destination
data.

3. Get source data for operation.
4. Perform operation.
Pipeline design:
while Instruction 1 is executing
Instruction 2 1s retrieving source data
Instruction 3 1s being decoded
Instruction 4 1s being retrieved from memory.

Four instructions at once, with an instruction
completion each cycle.

FZ13A Programming Language design and Implementation -4th Edition 57

B i U

Impact on language design

With a standard CISC design, the statement E=A+B+C+D
will have the postfix EAB+C+D+= and will execute as
follows:

1. Add A to B, giving sum.
2. Add C to sum.

3. Add D to sum.

4. Store sum 1n E.

But, Instruction 2 cannot retrieve sum (the result of
adding A to B until the previous instruction stores
that result. This causes the processor to wait a
cycle on Instruction 2 until Instruction 1 completes
its execution.

A more intelligent translator would develop the postfix
EAB+CD++=, which would allow A+B to be computed in
parallel with C+D

FZ13A Programming Language design and Implementation -4th Edition 58

B i U

Further optimization

E=A+B+C+D
J=F+G+H+1

has the postfix
AB+FG+CD+HI+ (1) (3)+(2) (4)+E(5)=F(6)=

[where the numbers indicate the operation number within
that expression].

In this case, each statement executes with no
interference from the other, and the processor
executes at the full speed of the pipeline

FZ13A Programming Language design and Implementation -4th Edition 59

B i U

Conditionals

A =B + C;
1f B then E = 1
ELSE E = 2

Consider the above program. A pipeline architecture may
even start to execute (E=1) before 1t evaluates to
see 1f D is true. Options could be:

e If branch 1s take, walt for pipeline to empty. This
slows down machine considerably at each branch

* Simply execute the pipeline as 1s. The compililer has
to make sure that if the branch 1is taken, there 1is
nothing in the pipeline that can be affected.

This puts a great burden on the compiler writer.
Paradoxically the above program can be compiled and
run more efficiently as 1f the following was written:

if D (A=B+C) then E =1
ELSE E = 2
[Explain this strange behavior.]

FZ13A Programming Language design and Implementation -4th Edition 60

B i U

Summary

New processor designs are putting more emphaslis on good
language processor designs.

Need for effective translation models to allow
languages to take advantage of faster hardware.

What’s worse - simple translation strategies of the
past, may even fail now.

PZ13A Programming Language design and Implementation -4th Edition 61

B i 4 U

Multiprocessor system architecture

Pl [P] |P| [P P P P P
Processors MI—@——@ l
Memory modules M——@—@—@
M————8
M———§—#
P P P
bus M————@
M M M M M M L & & . M M M M M
{a) Single bus (b} Crossbar switch (¢) Omega network

Impact: Multiple processors independently executing

Need for more synchronization

Cache coherence: Data 1n local cache may not be up to
date.

PZ13A

FProgramming Language design and Implementation -4th Edition

B i U

62

Tightly coupled systems

Tightly coupled systems

All processors have access to all memory

Semaphores can be used to coordinate communication
among processors

Ouick (nanosecond) access to all data

Loosely couples machines
Processors have access to only local memory
Semaphores cannot be used
Relatively slow (millisecond) access to some data
Model necessary for networks like the Internet

FZ13A Programming Language design and Implementation -4th Edition 63

B i U

